Summary to the working program of the discipline "Organic chemistry"

the main educational program of higher education (specialty) in the specialty 33.05.01 Pharmacy **1. The purpose of mastering the discipline** is participation in the formation of the following competencies: UC-1, GPC-1

2. The place of discipline in the structure of the GEP

2.1. The discipline refers to the basic part of block 1 "Disciplines (modules)" of the **GEP HE**. The discipline is studied in III-IV semesters.

3. Requirements for the results of mastering the program of discipline (module) for the formation of competencies

The study of the discipline is aimed at the formation of the following universal (UC), general professional (GPC)

ge	Code and name of the competence acquisition metric							
N⁰	Compete nce code	The content of the competence (or its part)	etence know be able		possess	Evaluatio n tools		
1.	UC-1	the ability to carry out a critical analysis of problem situations based on a systematic approach, to develop an action strategy	How to put into practice the methods of humanitarian, natural sciences, biomedical and clinical sciences in various types of professional and social activities	Analyze socially significant problems and processes	The methods of humanitarian natural sciences, biomedical and clinical sciences	Tests, multiply choice tests, colloquia , credits, exams		
2.	GPC-1	the ability to use basic biological, physico- chemical, chemical, mathematical methods for the development, research and examination of medicines, the manufacture of medicines	How to apply the basic methods, methods and means of obtaining storage, processing of scientific and professional information; receive information from various sources, including using modern computer tools, network technologies, databases and knowledge	Work with scientific literature analyze information, conduct searches, turn what is read into tool for solving professional problems Use the rules for constructing chemical formulas, graphs, tables using appropriate computer programs, including for creating computer presentations.	Abili ty and willingness to participate in the formulation of scientific problems and their experimenta in implementat ion Com puter programs for constructing chemical and stereochemi cal formulas of organic compounds and other	Tests, multiply choice tests, colloquia , credits, exams		

		types of illustrative	
		material.	

	. Sections of the academic discipline and competencies that are formed when mastering them			
№ п/п	Competen ce code	Section name of the discipline	The content of the section in teaching units	
N⁰	Competen	Section name	The content of the section in teaching units 1.1. Definition of organic chemistry. Development of ideas about the structure of organic compounds. Theory of the structure of A.M. Butlerov, its philosophical essence and development at the present stage. Organic chemistry as a basic discipline in the system of pharmaceutical education. 1.2. Classification of organic compounds: functional group and structure of the carbon skeleton as classification features of organic compounds. Main classes of organic compounds. 1.3. Nomenclature of organic compounds. Basic principles of IUPAC nomenclature. The use of radical-functional nomenclature for certain classes of organic compounds. 1.4. Types of chemical bonds in organic compounds. Covalent σ - and π -bonds. The structure of double (C=C, C=O) and triple (C=C) bonds; their main characteristics (length, energy, polarity, polarizability). 1.5. Mutual influence of atoms in the molecules of organic compounds and methods of its transmission. inductive effect. mesomeric effect. 1.6. Classification of organic reactions: addition, substitution, elimination, rearrangement. The concept of the reaction mechanism - ionic (electrophilic, nucleophilic), free radical. The structure of intermediate active particles (carbocations, carboanions, free radicals). Transition state. 1.7. Classification of organic reactions: addition, substitution, elimination, rearrangement. The concept of the reaction mechanism - ionic (electrophilic, nucleophilic), free radical. The structure of intermediate active particles (carbocations, carboanions, free radicals). Transition state. 1.8. Alkanes. Nomenclature. Structural isomerism. physical properties. Spectral characteristics of alkanes. Ways to get. Natural sources of hydrocarbons. Radical substitution reactions, mechanism. Methods for the formation of free radicals. The structure of free radicals and	
			reaction mechanism - ionic (electrophilic, nucleophilic), free radical. The structure of intermediate active particles (carbocations, carboanions, free radicals). Transition state. 1.8. Alkanes. Nomenclature. Structural isomerism. physical properties. Spectral characteristics of alkanes. Ways to get.	
			formation of free radicals. The structure of free radicals and the factors that determine their stability. Regioselectivity of radical substitution. Isomerization, oxidation and dehydrogenation of alkanes. Vaseline oil, paraffin.	
			1.9. Cycloalkanes. Nomenclature. Ways to get. small cycles. Electronic structure of cyclopropane (σ -bonds). Features of the chemical properties of small cycles (addition reactions). normal cycles. substitution reactions. Conformations of	
			cyclohexane. Energy difference of cyclohexaneconformations (armchair, bath, half-chair). Axial andequatorial connections.1.10. Alkenes. Nomenclature. Isomerism. physical properties.	

4. Sections of the academic discipline and competencies that are formed when mastering them

Spectral characteristics of alkenes. Ways to get. Electrophilic
addition reactions, mechanism. The structure of carbocations.
Spatial orientation of the connection. Addition of halogens,
hydrohalogenation, hydration and the role of acid catalysis.
Markovnikov's rule, its modern interpretation (static and
dynamic approaches). Substitution reactions to the allyl
position. Oxidation of alkenes (hydroxylation, ozonation,
epoxidation). catalytic hydrogenation. Identification of
alkenes.
1.11. Alkynes. Nomenclature. Isomerism. physical properties.
Spectral characteristics of alkynes. Ways to get.
Electrophilic addition reactions (hydrohalogenation, addition
of halogens). Hydration of acetylene (Kucherov reaction).
Comparison of the reactivity of alkynes and alkenes in
electrophilic addition reactions. Substitution reactions
(formation of acetylides) as a consequence of the CH-acid
properties of alkynes. Cyclotrimerization of acetylene.
Alkyne oxidation. Alkyne identification.
1.12. Conjugation (π -, π -conjugation). Conjugated open
circuit systems. Conjugation energy.
Conjugated dienes (butadiene, isoprene). Electrophilic
addition reactions (hydrohalogenation, addition of halogens).
Peculiarities of addition in the series of conjugated dienes.
1.13. Conjugation (π -, π -conjugation). Conjugated open
circuit systems. Conjugation energy.
Conjugated dienes (butadiene, isoprene). Electrophilic
addition reactions (hydrohalogenation, addition of halogens).
Peculiarities of addition in the series of conjugated dienes.
1.14. Mononuclear arenas. Nomenclature. Ways to get.
aromatic properties. Spectral characteristics of aromatic
hydrocarbons. Electrophilic substitution reactions,
mechanism, π - and σ -complexes. Halogenation, nitration,
sulfonation, alkylation, acylation of arenes. Influence of
electron-donating and electron-withdrawing substituents on
the direction and rate of the electrophilic substitution reaction.
Orientants of the I and II kind, p,π -conjugation. Coordinated
and non-coordinated orientation. Chemical properties of
benzene homologues. Reactions proceeding with loss of
aromaticity: hydrogenation, addition of chlorine. Oxidation.
Benzene, toluene, xylenes. Arena identification.
1.15. Condensed arenas. Naphthalene, aromatic properties.
Electrophilic substitution reactions (sulfonation, nitration)
Orientation of substitution in the naphthalene series.
Recovery (tetralin, decalin) and oxidation (naphthoquinones).
Anthracene, phenanthrene; aromatic properties. Recovery,
oxidation.
1.16. Spatial structure of organic compounds (basics of
stereochemistry). Configuration and conformation are the
most important concepts of stereochemistry. Elements of
symmetry of molecules (axis, plane, center) and symmetry
operations (rotation, reflection). Chiral and achiral molecules.
Asymmetric carbon atom as a chiral center. Methods for

		1	1		
			depicting the spatial structure of molecules.		
			Stereoisomerism of molecules with one center of chirality		
			(enantiomerism). Glyceraldehyde as a configuration standard.		
			Fisher projection formulas. Optical activity of enantiomers.		
			Polarimetry as a method for studying optically active		
			compounds. Relative and absolute configurations. D,L- and		
			R,S-systems of stereochemical nomenclature. Racemates.		
			Stereoisomerism of molecules with two or more centers of		
			chirality (enantiomerism, σ - and π -diastereomerism). E,Z-		
			stereochemical series. The difference between the properties		
			of enantiomers and diastereomers. Methods for separating		
			racemates.		
			Conformations. The emergence of conformations as a result		
			of rotation around σ -bonds. Factors that hinder rotation.		
	UC 1	The main classes of	Relationship of spatial structure with biological activity.		
	UC-1		2.1. Halogen derivatives of hydrocarbons. Classification		
	GPC-1	mono- and	depending on the number and arrangement of halogen atoms,		
		polyfunctional	the nature of the hydrocarbon radical. Nomenclature. physical		
		organic compounds.	properties.		
			2.2. haloalkanes and halocycloalkanes. Ways to get.		
			Characterization of carbon-halogen bonds (length, energy,		
			polarity, polarizability). Reactions of nucleophilic		
			substitution; the mechanism of mono- and bimolecular		
			reactions, their stereochemical orientation. Transformation of		
			halogen derivatives of hydrocarbons into alcohols, ethers and		
			esters, sulfides, amines, nitriles. nitro derivatives.		
			Elimination reactions: dehydrohalogenation, dehalogenation.		
			Zaitsev's rule. Competitiveness of nucleophilic substitution		
			and elimination reactions.		
			2.3. Halogenalkenes. Allyl and vinyl halides, causes of		
			different reactivity in nucleophilic substitution reactions.		
			2.4. Halogenarenes. Nucleophilic substitution of the halogen		
			in the nucleus. The difference in the mobility of the halogen		
2.			in the aromatic ring and the side chain. Deactivating and		
			orienting effect of halogen in electrophilic substitution		
			reactions.		
			Ethyl chloride, carbon tetrachloride, chloroform, iodoform,		
			chlorobenzene, benzyl chloride.		
			Identification of halogen derivatives of hydrocarbons.		
			2.5. Alcohols. Classification according to the number and		
			arrangement of hydroxyl groups, according to the nature of		
			the radical. Nomenclature. physical properties. Spectral		
			characteristics of alcohols. Ways to get.		
			2.6. Kacidic properties: the formation of alcoholates. Main		
			properties: formation of oxonium salts. Intermolecular		
			hydrogen bonds as a consequence of the amphoteric nature of		
			alcohols. Influence of intermolecular association on physical		
			properties and spectral characteristics.		
			2.7. Nucleophilic and basic properties of alcohols: obtaining		
			haloalkanes, ethers and esters. Intermolecular and		
			intramolecular dehydration of alcohols. Alcohol oxidation.		
1			2.8. Polyhydric alcohols, features of their chemical behavior.		

Unsaturated alcohols; prototropic tautomerism of enols.
Eltekov rearrangement.
Methanol, ethanol, propanols, butanols, benzyl alcohol,
ethylene glycol, glycerin, glycerol trinitrate. Identification of
alcohols.
2.9. Phenols. Classification according to the number of
hydroxyl groups. Nomenclature. physical properties. Spectral
characteristics of phenols. Ways to get.
Acidic properties: formation of phenolates. Nucleophilic
properties of phenol: obtaining ethers and esters. Oxidation of
phenols.
Electrophilic substitution reactions in phenols: halogenation,
nitration, sulfonation, nitrosation, carboxylation,
hydroxymethylation.
Phenol; 2,4,6-trinitrophenol; α - and β -naphthols;
pyrocatechin, resorcinol, hydroquinone.
Identification of phenolic compounds.
2.10. Ethers. Nomenclature. physical properties. Ways to
get. Basic properties, formation of oxonium salts.
Nucleophilic cleavage with hydrohalic acids. Oxidation.
Introduction to organic hydroperoxides and peroxides.
Diethyl ether, anisole, phenetol.
The concept of thioalcohols and thioethers.
2.11. carbonyl compounds. Nomenclature. physical
properties. Spectral characteristics. Methods for obtaining
aliphatic and aromatic aldehydes and ketones.
2.12. Nucleophilic addition reactions, mechanism. Influence
of the radical on the reactivity of the carbonyl group. Water
connection. Factors determining the stability of hydrated
forms. Addition of alcohols, sodium hydrosulfite, hydrogen
cyanide, organometallic compounds (formation of primary,
secondary and tertiary alcohols). Polymerization of
aldehydes; paraform, paraldehyde.
2.13. Addition-cleavage reactions: the formation of imines
(Schiff bases), oximes, hydrazones, arylhydrazones,
semicarbazones: their use for the identification of aldehydes
and ketones. Interaction of formaldehyde with ammonia
(hexamethylenetetramine).
2.14. Reactions involving α -CH-acid center. Condensations
of aldol and crotonic types, the role of acid and base catalysis.
Haloform reaction, iodoform test.
2.15. Oxidation and reduction of aldehydes and ketones. The
difference in the ease of oxidation of aldehydes and ketones,
Popov's rule. catalytic hydrogenation.
Formaldehyde (formalin), acetaldehyde, chloral (chloral
hydrate), acrolein, benzaldehyde, acetone, cyclohexanone,
acetophenone, benzophenone.
Identification of aldehydes and ketones.
2.16. Carboxylic acids. Classification. Nomenclature.
-
physical properties. Spectral characteristics. Ways to get.
monocarboxylic acids. The structure of the carboxyl group and the carboxylate ion as $p \pi$ conjugated systems. Acid
and the carboxylate ion as p,π -conjugated systems. Acid

properties of carboxylic acids; salt formation. Dependence of
acidic properties on the nature of the radical.
Reactions of nucleophilic substitution at the sp2-hybridized
carbon atom; mechanism. Formation of functional derivatives
of carboxylic acids. Acylation reactions. Anhydrides and acid
halides as active acylating agents.
2.17. Reactions involving the hydrocarbon radical of
carboxylic acids. Halogenation according to Gell-Volhard-
Zelinsky. Use of α -halogenated acids for the synthesis of α -
hydroxy, α -amino-, α , β -unsaturated acids. Formic, acetic,
propionic, butyric, isovaleric, acrylic, benzoic acids.
2.18. Esters. Receipt. Esterification reaction, the need for acid
catalysis. Acid and alkaline hydrolysis of esters.
Interesterification. Ammonolysis of esters.
2.19. Amides of carboxylic acids. Receipt. The structure of
the amide group. Acid-base properties of amides. Hydrolysis
of amides in acidic and alkaline media. Cleavage by
hypobromites. Dehydration to nitriles. Nitriles: obtaining, properties (hydrolysis, recovery); acetonitrile. Hydrazides of
carboxylic acids.
2.20. Carbonic acid and its derivatives. Carbamide:
preparation, properties (formation of salts, decomposition by
nitrous acid and hypohalogenites, formation of biuret,
hydrolysis). Ureido acids and ureides of acids.
2.21. Dicarboxylic acids; properties as bifunctional
compounds. Specific properties of dicarboxylic acids:
increased acidity of the first homologues; decarboxylation of
oxalic and malonic acids, formation of cyclic anhydrides
(succinic, glutaric, maleic acids). Phthalic acid, phthalic
anhydride, phthalimide. Phenolphthalein.
2.22. Triacylglycerides (fats, oils). Higher fatty acids as
structural components of triacylglycerides (palmitic, stearic,
oleic, linoleic, linolenic). The relationship of the consistency
of triacylglycerides with the structure of acids. Hydrolysis,
hydrogenation, oxidation. Analytical characteristics of fats
and oils (iodine number, saponification number). Soaps and
their properties.
Phospholipids (lecithins, cephalins): structure, relation to
hydrolysis, biological significance. Waxes: structure,
properties as esters, use in medicine.
2.23. Amines. Classification. Nomenclature. physical
properties. Spectral characteristics of amines. Methods for
obtaining aliphatic and aromatic amines.
Acid-base properties, formation of salts. Dependence of the
basic properties of amines on the structure of hydrocarbon radicals and the solvation effect.
nucleophilic properties. Alkylation of amines. Acylation as a
way to protect the amino group. Opening of the α -oxide ring
by amines, formation of amino alcohols. Reactions of
primary, secondary and tertiary aliphatic and aromatic amines
with nitrous acid. Carbylamin reaction - an analytical test for
the primary amino group.
I the primary annual broup.

3.	UC-1 GPC-1	Heterofunctional and natural compounds (carbohydrates, terpenes, steroids).	The activating effect of the amino group on the reactivity of the aromatic nucleus. Halogenation, sulfonation, nitration of aromatic amines. Methylamine, dimethylamine, trimethylamine, aniline, N-methylanils, N,N-dimethylanilines, toluidines, fenethidines. Amine identification. 2.24. Diazo and azo compounds. Nomenclature. Diazotized reaction. conditions for conducting. The structure of diazonium salts, tautomerism. Reactions of diazonium salts with nitrogen release. Synthetic possibilities of the reaction: replacement of a diazo group by a hydroxy group, an alkoxy group, hydrogen, halogens, a cyano group. Reactions of diazonium salts without nitrogen release: formation of azo compounds, triazenes, phenylhydrazines. Azo coupling as an electrophilic substitution reaction. Coupling conditions with amines and phenols. Use of the azo coupling reaction in pharmacoanalysis. 3.1.Hydroxy ACIDS OF THE ALIPHATIC SERIES. THE MAIN WAYS TO GET. CHEMICAL PROPERTIES AS HETEROFUNCTIONAL COMPOUNDS. SPECIFIC REACTIONS A. B., T-HYDROXY ACIDS UNDER THE ACTION OF STRONG MINERAL ACIDS. MONOBASIC (LACTIC), DIBASIC (TARTARIC, MALIC) AND TRIBASIC (CITRIC) ACIDS. 3.2. Phenolic acids. Salicylic acid, production method. Chemical properties as a heterofunctional compound. Esters of salicylic acid used in medicine: methyl salicylate, phenyl salicylate, acetylsalicylic acid, p-aminosalicylic acid (PASA). 3.3. Oxoacids. Ways to get. Chemical properties as heterofunctional compounds. Aldehydo- (glyoxalic) and ketone acids (pyruvic, acetoacetic). 3.4. Amino acids. Ways to get. Chemical properties as heterofunctional compounds. Aldehydo- (glyoxalic) and ketone acids (pyruvic, acetoacetic). 3.4. Amino acids, peptides, proteins. The structure and classification of α-amino acids that make up proteins. Stereoisomerism. Chemical properties as heterofunctional compounds. Bipolar structure, formation of chelate compounds. Bipolar structure, formation of chelate compounds. Bipolar structure, formation of chelate compounds. Bipolar structure, formation
			α -Amino acids, peptides, proteins. The structure and classification of α -amino acids that make up proteins. Stereoisomerism. Chemical properties as heterofunctional compounds. Bipolar structure, formation of chelate compounds. Reactions about nitrous acid, formaldehyde; their use in the quantitative analysis of amino acids. Structural features of the peptide group. Primary structure of
			 Introduction to peptide synthesis and amino acid sequence analysis in peptides and proteins. 3.5. n-Aminobenzoic acid; its derivatives used in medicine: anestezin, novocaine, novocainamide. 3.6. Csulfanilic acid. Preparation, chemical properties. Sulfanilamide (streptocide), production method. The general principle of the structure of sulfanilamide drugs.

3.7. Amino alcohols and aminophenols. Biogenic amines: 2-
aminoethanol (colamine), choline, acetylcholine, epinephrine,
norepinephrine. p-Aminophenol and its derivatives used in
medicine: phenacetin, paracetamol.
3.8. Carbohydrates. General characteristics, distribution in
nature, biological significance.
3.9. Monosaccharides. Classification (aldoses and ketoses,
pentoses and hexoses).
Stereoisomerism. D and L-stereochemical series. Open and
cyclic forms. Cyclo-oxo-tautomerism. Oxide ring size
(furanose and pyranose). Haworth formulas; α - and β -
anomers. Mutarotation. Conformations; the most stable
conformations of the most important D-hexopyranoses.
3.10. Chemical properties of monosaccharides. Reactions
involving alcohol hydroxyl groups (acylation, alkylation,
phosphorylation). Reactions of hemiacetal hydroxyl: reducing
properties of addoses, formation of glycosides. Types of
glycosides; their relation to hydrolysis. epimerization of
monosaccharides.
Oxidation of monosaccharides. Obtaining glyconic, glycaric
and glycuronic acids. Recovery of monosaccharides to
polyols (aldit).
Qualitative reactions for the detection of hexoses and
pentoses. Pentoses:
D-xylose, D-ribose, D-2-deoxyribose, D-arabinose. Hexoses:
D-glucose, D-galactose, D-mannose, D-fructose. Amino
sugars: D-glucosamine, D-galactosamine. Alditol: D-sorbitol,
xylitol. D-glucuronic, D-galacturonic, D-gluconic acids.
Ascorbic acid (vitamin C).
3.11. Oligosaccharides. The principle of the structure;
nomenclature.
Reducing and non-reducing disaccharides. Tautomerism of
reducing disaccharides. relation to hydrolysis. Maltose,
cellobiose, lactose, sucrose.
3.12. Polysaccharides. The principle of construction. Homo-
and heteropolysaccharides. Esters and ethers of
polysaccharides: acetates, nitrates. The ratio of
polysaccharides and their esters to hydrolysis.
Starch (amylose, amylopectin), cellulose, glycogen, dextrans,
inulin, pectins.
3.13. Terpenes and terpenoids. Isoprene rule. Classification
according to the number of isoprene units and according to
the number of cycles.
Monoterpenes. Acyclic (citral and its isomers), monocyclic
(limonene, terpinolene), bicyclic (α -pinene, borneol,
(innohene), terpinotene), beyone (a pinote, borneoi, camphor) terpinotes. Synthesis of camphor from α -pinote and
bornyl acetate. Menthane and its derivatives used in
medicine: menthol, validol, terpinhydrate
Diterpenes: retinol (vitamin A), retinal. Tetraterpenes
(carotenoids): β -carotene (provitamin A).
3.14. Steroids. The structure of gonan
(cyclopentanperhydrophenanthrene). Nomenclature.
(cjeropentanpernyarophenantinene). Homenetature.

		1	
			Stereoisomerism: cis-, trans-joint of cyclohexane rings. α , β -
			Stereochemical nomenclature, 5 α -, and 5 β -series. Ancestral
			hydrocarbons of steroids: estran, androstane, pregnane,
			cholan, cholestane.
			Cholestan derivatives (sterols): cholesterol, ergosterol;
			vitamin D2. Cholan derivatives (bile acids): cholic and
			deoxycholic acids, paired bile acids. Androstan derivatives
			(androgenic substances): testosterone, androsterone. Estrane
			derivatives (estrogenic substances): estrone, estradiol, estriol.
			Pregnane derivatives (corticosteroids): deoxycorticosterone,
			cortisone, hydrocortisone, prednisolone. Aglycones of cardiac
			glycosides: digitoxygenin, strophanthidine. The general
			principle of the structure of cardiac glycosides.
			Chemical properties of steroids due to functional groups: the
			formation of derivatives of hydroxyl, carbonyl, carboxyl
			groups; properties of unsaturated steroids.
	UC-1	Heterocyclic	4.1. Five-membered aromatic heterocycles with one
	GPC-1	compounds. Nucleic	heteroatom: pyrrole, furan, thiophene as π -excess systems.
		acids. Alkaloids.	Electronic structure. The concept of a heteroatom of the
			pyrrole type. Acidophobicity of pyrrole and furan. Acid-base
			properties of pyrrole. Reactions of electrophilic substitution,
			orientation of substitution. Features of reactions of nitration,
			sulfonation and bromination of acidophobic heterocycles.
			Hydrogenation of pyrrole and furan (pyrrolidine,
			tetrahydrofuran).
			Furfurol, semicarbazone 5-nitrofurfurol (furatsilin).
			Benzpyrrole (indole), tryptophan. Porphine as a stable
			tetrapyrrole aromatic system.
			4.2. Five-membered aromatic heterocycles with two
			heteroatoms: pyrazole, imidazole. thiazole, oxazole as π -
			amphoteric systems. Electronic structure. The concept of a
			heteroatom of the pyridine type. Tautomerism of imidazole
			and pyrazole. Acid-base properties; association formation.
			Electrophilic substitution reactions in pyrazole and imidazole
4.			(nitration, sulfonation, halogenation). Reactions of
			nucleophilic substitution in thiazole (amination).
			Pyrazolone-5 and its tautomerism. Medicines based on
			pyrazolone-5: antipyrine, amidopyrine, analgin. Syntheses of
			antipyrine and amidopyrine based on diketene.
			Derivatives of imidazole; histidine, histamine, benzimidazole.
			dibazol.
			Thiazolidine. The idea of the structure of penicillin
			antibiotics.
			4.3. Azins. Structure, nomenclature. Pyridine, quinoline,
			isoquinoline as π -deficient systems. Basic properties.
			Electrophilic substitution reactions (sulfonation, nitration,
			halogenation). Deactivating effect of the pyridine nitrogen
			atom, substitution orientation in pyridine and quinoline.
			Nucleophilic substitution reactions (amination - Chichibabin
			reaction, hydroxylation). Lactim-lactam tautomerism of
			pyridine hydroxy derivatives. Nucleophilic properties of
			pyridine.
L	1	1	

Pyridine homologues: α -, β -, γ -picolines; their oxidation.
Nicotinic and isonicotinic acids. Nicotinic acid amide
(vitamin PP), isonicotinic acid hydrazide (isoniazid), ftivazid.
Piperidine. Basic properties.
Synthesis of quinoline according to Skraup. 8-
Hydroxyquinoline (oxin) and its derivatives used in medicine.
4.4. Piran group. Instability of α -, γ -pyrans.
α -, γ -Pyrons. Pyrilium salts, their aromaticity. Benzopyrones:
chromone, coumarin, flavone and their hydroxy derivatives.
Flavonoids: luteolin, quercetype, rutin. Flavan and its
hydroxy derivatives (catechins). Tocopherol (vitamin E).
4.5. Six-membered heterocycles in two heteroatoms.
Structure; nomenclature. Representatives of diazines:
pyrimidine, pyrazine, pyridazine.
Pyrimidine and its hydroxy- and amino derivatives: uracil,
thymium, cytosine are components of nucleosides. Lactim-
lactam tautomerism of nucleic bases. barbituric acid;
production, lactim-lactam and keto-enol tautomerism, acid
properties. Derivatives of barbituric acid: barbital,
phenobarbital. Thiamine (vitamin B1).
4.6. Condensed systems of heterocycles. Purine: aromaticity.
Hydroxy- and amino derivatives of purine: hypoxanthine,
xanthine, uric acid, adenine, guanine. Lactim-lactam
tautomerism. Acid properties of uric acid, its salts (urates).
Methylated xanthines: caffeine, theophylline. theobromine.
Qualitative reactions of methylated xanthines.
4.7. Nucleosides, nucleotides. Purine and pyrimidine
nucleosides. Structure; nomenclature. The nature of the
connection of the nucleic base with the carbohydrate residue.
Nucleotides. Structure; nomenclature of nucleoside
monophosphates. Nucleoside polyphosphates. relation to
hydrolysis. Diherwelsis saids (DNA) and decrumiherwelsis saids (DNA).
Ribonucleic acids (RNA) and deoxyribonucleic acids (DNA).
The primary structure of nucleic acids.
4.8. Alkaloids. Chemical classification. Basic properties; salt
formation.
Alkaloids of the pyridine group: nicotine, anabazine.
Alkaloids of the quinoline group: quinine. Alkaloids of the
isoquinoline and isoquinoline-phenanthrene groups:
papaverine, morphine, codeine. Tropane group alkaloids:
atropine, cocaine. Connection of reactivity with the presence
of specific functional groups. Identification of alkaloids.

5. The volume of the academic discipline and types of academic work The total complexity of the discipline is _11__ credit units (216 academic hours)

Type of educational work	Labor intensity			Labor intensity (AH) in	
	volume in	volume in	sem	nesters	
	credit units	academic			
	(CU)	hours (AH)	3	4	
Classroom work, including	5,6	202	108	94	

Lectures (L)	1,67	60	28	32
Laboratory practicum (LP)*	3,94	142	80	62
Practicals (P)	-	-	-	-
Seminars (S)				
Student's individual work (SIW)	4,4	158	72	86
exam	1	36	-	36
TOTAL LABOR INTENSITY	11	396	180	216